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Abstract—Dynamic pricing (a.k.a. real-time pricing) is a
method of invoking a response in demand pricing electricity at
hourly (or more often) intervals. Several studies have proposed
dynamic pricing models that maximize the sum of the welfares
of consumers and suppliers under the condition that the supply
and demand are equal. They assume that the cost functions of
suppliers are convex. In practice, however, they are not convex
because of the startup costs of generators. On the other hand,
many studies have taken startup costs into consideration for
unit commitment problems (UCPs) with a fixed demand. The
Lagrange multiplier of the UCP, called convex hull pricing (CHP),
minimizes the uplift payment that is disadvantageous to suppliers.
However, CHP has not been used in the context of demand
response.

This paper presents a new dynamic pricing model based
on CHP. We apply CHP approach invented for the UCP to a
demand response market model, and theoretically show that the
CHP is given by the Lagrange multiplier of a social welfare
maximization problem whose objective function is represented as
the sum of the customer’s utility and supplier’s profit. In addition,
we solve the dual problem by using an iterative algorithm based
on the subgradient method. Numerical simulations show that the
prices determined by our algorithm give sufficiently small uplift
payments in a realistic number of iterations.

I. INTRODUCTION

Dynamic pricing (a.k.a. real-time pricing) is a method of
invoking demand response [1] by pricing at hourly (or more
often) intervals. In contemporary U.S. structured wholesale
markets and deregulated retail markets, several market opera-
tors (e.g. New York ISO [2]) have introduced dynamic pricing
mechanisms based on demand response market models. A
question arises in regard to such markets: what kind of pricing
scheme should the market operator choose? Recently, several
studies have proposed dynamic pricing models. In particular,
Roozbehani et al. [3] proposed a nonlinear control model
for changing electricity prices in a real-time market. They
focused on the stability of the market and analysed their model
using volatility measures. They showed that their model had
stabilizing effects on the market. On the other hand, Miyano
and Namerikawa [4] proposed a pricing model in a day-ahead
market where the market operator makes the next day’s hourly
pricing decision. They studied ways of controlling the load
level by using dynamic pricing. Their pricing algorithm is
based on steepest descent and has a good controlling effect.

These papers proposed pricing models that maximize the
sum of the welfares of producers and consumers under the

condition that supply and demand are equal. They assume
that the cost functions of suppliers are convex. However, it is
natural to assume a nonconvex and discontinuous cost function
because of the startup costs of generators. Indeed, such a cost
function is assumed within the setting of unit commitment
problems (UCPs) [5], [6], [7], [8], [9]. A UCP is one to find
the minimum cost of dispatching generators to meet a fixed
electrical load. It does not consider dynamic demand; that is, it
does not control the demand by changing the electricity price.
Electricity pricing models that reflect startup costs have been
studied in the context of UCP [5], [6], [7], [8], [9]. Because
of startup costs, however, none of pricing models may be able
to bridge the gap between the optimal profit and the supplier’s
actual profit. This gap is called the uplift payment, and it can be
regarded as a measure of the supplier’s disadvantage. Several
pricing models have been studied in order to make the uplift
payment small (See [5], [6], [7] for a comparison of these
models). The most successful pricing model at reducing uplift
payments is the convex hull pricing (CHP) (a.k.a. extended
locational marginal pricing) proposed by Gribik et al. [6]. The
authors theoretically showed that CHP minimizes the uplift
payment. The uplift payments for owners of many generators
tend to be relatively small and can often be ignored. However,
this may not be true for small producers since startup costs
occupy a large portion of the total cost of electricity generation.

This paper presents a new dynamic pricing model based
on CHP. We applied a CHP approach invented for the UCP
to a demand response market model; i.e., our market model
considers both the demand response and the startup cost.
First, we define a social welfare maximization problem which
maximizes the sum of consumers’ utility and suppliers’ profit
under the condition that supply and demand are equal, and
then we theoretically show that the CHP is given by a
solution of its dual problem, i.e., the Lagrange multiplier.
This implies that our price minimizes the uplift payment for
the equilibrium demand. In addition, we provide an iterative
pricing algorithm based on a subgradient method to solve
the dual problem. Numerical results show that our pricing
schemes led to smaller uplift payments compared with standard
pricing schemes. Since our pricing model has a nonsmooth
objective function including 0-1 integer variables, it is difficult
to be solved by exact optimization algorithms. However, in
numerical experiments, the prices of our pricing algorithm lead
to sufficiently small uplift payments in a realistic number of
iterations.

The remainder of this paper is organized as follows.
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Section II presents the setting of an electricity market. Section
III defines the UCP and the convex hull price. Section IV
introduces a new dynamic pricing model that includes a social-
welfare maximization problem and UCP. We theoretically
show that this pricing model leads to the convex hull price. A
subgradient based method is applied to our model in Section
V. Numerical simulation results are reported in Section VI.
We give conclusions and list possible directions for research
in Section VII.

In what follows, we denote column vectors in bold face,
e.g., x ∈ Rn whose i-th element is xi ∈ R (i = 1, 2, . . . , n).

II. MARKET MODEL

We will begin by describing the electricity market model
and an existing pricing model. An electricity market has three
kinds of participants: consumers, suppliers, and an independent
system operator (ISO). The suppliers (or consumers) decide
their electric power production (or consumption) so as to
maximize their profit (or utility, respectively) at a given
price of electricity. The ISO is a non-profit institution that
is independent of electric power companies. The ISO makes
hourly (or more often) pricing decisions to balance supply and
demand.

A. Supply and demand model
We assume a single representative supplier (or consumer)

whose response represents the aggregate response of several
suppliers (or consumers) and focus on a one-period model
(i.e., a model with that does not take into account dynamical
changes) in order to simplify our notation. Our model and
algorithm can be extended to a multi-agent and multi-period
model, as is done in [5]. Let u : [0,∞) → [0,∞) be the utility
function of a representative consumer, which represents the
dollar value of consuming electricity. Let v : [0,∞) → [0,∞)
be the cost function of a representative supplier, which repre-
sents the dollar cost of producing electricity. We place some
assumptions on these functions.

Assumption 1: The utility function u is class-C2, mono-
tonically increasing, and strictly concave on [0,∞). The cost
function v is class-C2, monotonically increasing, and strictly
convex on [0,∞). (Examples of u and v are shown in [4].)

The consumer and supplier respectively maximize their utility
and profit. Therefore, for a given electricity price p > 0, they
determine their optimal electricity consumption d(p) ≥ 0 and
production s(p) ≥ 0 by solving the following utility and profit
maximization problems:

d(p) = argmax
d≥0

u(d)− pd (1)

= max
d≥0

{0, {d | u̇(d) = p}}, (2)

s(p) = argmax
y≥0

py − v(y) (3)

= max
y≥0

{0, {y | v̇(y) = p}}.

(1) and (3) respectively corresponds to a consumer’s and
supplier’s problem.

B. Pricing model
The ISO is an independent, nonprofit institution whose pri-

mary object is to match supply and demand. In the electricity

market, neither the consumer nor the supplier bid. Hence, the
ISO matches the supply s(p) and demand d(p) by making an
appropriate pricing decision p. Here, we make the following
assumption.

Assumption 2: The utility function u of the consumer is
unknown to the ISO. The cost function v of the supplier is not
necessarily known to the ISO.

Accordingly, an electricity price p is determined through the
following procedure:

1) The ISO sets a price pk and sends it to the supplier
and consumer.

2) The supplier and consumer make their operation
plans, s(pk) and d(pk), and send them to the ISO.

3) If there is a gap between the levels of production
s(pk) and consumption d(pk), the ISO assigns a new
price pk+1 to manage the balance of supply and
demand and sends pk+1 back to the supplier and
consumer.

4) Steps 2 and 3 are repeated N times.

Fig. 1. Schematic views of the electricity market model.

Miyano and Namerikawa [4] proposed a pricing model
based on a social-welfare maximization problem under the
condition that the supply and demand are equal. Social welfare
is defined as the sum of the consumer’s profit (as in (1)) and
the supplier’s profit (as in (3)):

{u(d)− pd}+ {py − v(y)}. (4)

Here, we make the following assumptions in order to simplify
the mathematical models.

Assumption 3:

1) Resistive losses in transmission and distribution lines
can be ignored.

2) Line capacities are high enough so that congestion
will not occur.

3) There are no reserve capacity constraints.

Under Assumption 3, the supply-demand balance is satisfied if
and only if d = y. Thus, we obtain the following social-welfare
maximization problem:

max
y≥0,d≥0

u(d)− v(y) s.t. d = y. (5)

Or more simply,

max
d≥0

u(d)− v(d). (6)

However, because of Assumption 2, the ISO cannot solve
problem (5) (or (6)) directly. For this reason, the following
partial Lagrangian dual problem of (5) is considered in [4]:

min
λ

φ(λ), (7)
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where

φ(λ) = max
d≥0,y≥0

u(d)− v(y) + λ(y − d)

= max
d≥0

{u(d)− λd}+max
y≥0

{λy − v(y)}. (8)

The optimal solution of (7) is called the Lagrange multiplier
for (5). Since the maximization problems in (8) correspond to
(1) and (3), the ISO can make the consumer and supplier solve
(8) by sending λ to them. This mechanism allows the ISO to
solve (7) by using the steepest descent method. (See [4] for
details.)

Lemma 1 ([4]): Suppose that (d∗, y∗) is an optimal solu-
tion of (5), and λ∗ is an optimal solution of (7). If Assumption
1–3 are satisfied, we obtain d∗ = d(λ∗) and y∗ = s(λ∗).

Lemma 1 states that if λ∗ is chosen as a price, the demand
d(λ∗) and the supply s(λ∗) maximize the social welfare (4).
In other words, λ∗ can be regarded as an optimal price.

These results assume that the cost function v is convex.
Here, we consider an electricity market model with a non-
convex cost function in the setting of the unit commitment
problem (UCP) and provide an efficient pricing model for it.

III. UNIT COMMITMENT PROBLEM

We assume that the supplier has several different electricity
generators, possibly with different generating costs and startup
costs. The question for the supplier is how to operate electricity
generators in order to supply a given scheduled demand y at the
minimum cost. Here, we suppose that Assumption 3 is satisfied
1. Accordingly, the minimum cost function v : [0,∞) → [0,∞]
can be described as follows:

v(y) :=

∣∣∣∣∣∣∣
inf
g,z

∑
jCj(gj) +

∑
jSjzj

s.t.
∑

jgj = y

mjzj ≤ gj ≤ Mjzj , zj ∈ {0, 1}, ∀j,
(9)

where Cj is a piece-wise linear generating cost function
for an output gj ; Sj denotes the startup cost; mj and Mj

denote the minimum and maximum outputs; and zj represents
a decision to commit generator j. Problem (9) is called a
unit commitment problem (UCP). The optimal value v of the
UCP is characterized by lower semicontinuity, and it may be
nonconvex. Several pricing models that reflect the startup costs
have been developed in the setting of the UCPs, and some of
them are compared in [5], [6], [7]. A specific example of a
pricing model is described in the next section.

A. Convex hull price

A number of studies (e.g. [5], [6], [7], [8]) have tried to
reduce the uplift payment, which is defined as follows.

Definition 1 (Uplift payment): Suppose that a demand y is
given. The uplift payment Π(p, y) for a price p is defined as
follows:

Π(p, y) := sup
x
{px− v(x)} − {py − v(y)}.

1We can apply the method proposed in this paper to a general model without
Assumption 3 (for example, the model shown in [6]), though the resulting
model is complicated.

The first term supx{px − v(x)} represents the maximum
realizable profit with respect to the supply x under the price
p, and the second term {py−v(y)} represents the actual profit
at p and given demand y. The uplift payment can be regarded
as a cost incentive to make the supplier produce electricity to
meet the scheduled demand y. Therefore, it is natural to find
a price, p, that minimizes the uplift payment.

Such a price can be obtained by convex hull pricing (CHP)
(a.k.a. the extended locational marginal pricing), as proposed
in [6]. Before introducing CHP, we define the convex hull of
the cost function v(y):

Definition 2 (Convex hull of the cost function): The con-
vex hull vh of v is defined as

vh(y) := inf{µ | (y, µ) ∈ conv(epi(v))},

where conv(A) is the convex hull of a set A, and epi(v) is the
epigraph of v.

The convex hull of v can be regarded as the largest convex
function that is bounded above by v at any point in its domain.
(A conceptual illustration is given in [10].) Now, we can define
the CHP.

Definition 3 (Convex hull price): A convex hull price ph

is defined as the subgradient of the convex hull vh of the cost
function v at a given demand y, i.e.,

ph ∈ ∂vh(y).

The important property here is that the CHP minimizes the
uplift payment. Gribik et al. theoretically proved this property
in connection with duality theory. They also showed that the
CHP can be obtained by solving a partial Lagrangian dual
problem even though the explicit forms of v and its convex
hull vh are generally too complicated to compute. The next
two propositions are from [6].

Proposition 1 ([6]): A convex hull price ph minimizes the
uplift payment Π(·, y) with the given demand y, i.e.,

ph ∈ argmin
p≥0

Π(p, y).

Proposition 2 ([6]): Suppose that λ∗ is an optimal solution
of the partial Lagrangian dual problem of (9), as defined below:

max
λ

∣∣∣∣∣min
g,z

∑
jCj(gj) +

∑
jSjzj + λ(y −

∑
jgj)

s.t. mjzj ≤ gj ≤ Mjzj , zj ∈ {0, 1}, ∀j.
(10)

Then, λ∗ is a convex hull price, i.e.,

λ∗ ∈ ∂vh(y).

Although Proposition 2 gives us a way to obtain the CHP,
there still remains a difficulty in that (10) contains a mixed
integer programming problem. Many researchers have studied
algorithms for (10), e.g., [10], [11].

IV. PRICING MODEL

Here, we will add the minimum cost function v of (9)
into the supply model (3) of the market model. We derive a
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new ISO’s social-welfare maximization problem from (5) as
follows:

max
g,z,d

u(d)−
{∑

jCj(gj) +
∑

jSjzj

}
s.t.

∑
jgj = d, d ≥ 0 (11)

zjmj ≤ gj ≤ zjMj , zj ∈ {0, 1}. ∀j,

We will write this more simply, as (6). Since the ISO cannot
solve (11) directly because of Assumption 2, we will instead
consider a partial Lagrangian dual problem. For notational
simplicity, let X denotes the feasible set for outputs g and
commitment decisions z, i.e.,

X := {(g, z) | mjzj ≤ gj ≤ Mjzj , zj ∈ {0, 1}, ∀j}.

The partial Lagrangian dual problem of (11) is formulated as
follows:

min
λ

φ(λ), (12)

where

φ(λ) : = max
d≥0

{u(d)− λd}

+ max
(g,z)∈X

{
λ
∑

jgj −
{∑

jCj(gj) +
∑

jSjzj

}}
.

(13)

Note that our model takes into account price-sencitive demands
and hence is different from existing CHP models such as those
in [6], [10], [11]. Now we have reached the following result.

Proposition 3: The following statements hold:

1) The partial Lagrangian dual problem (12) has an
optimal solution (λ∗, g∗, z∗, d∗).

2) The problem (12) is equivalent to

max
d≥0

u(d)− vcc(d),

where the vcc is the biconjugate of v (i.e., the convex
conjugate of the convex conjugate of v).

3) λ∗ is a convex hull price, i.e.,

λ∗ ∈ ∂vh(d∗).

Proof: The idea behind the proof of 1) is to use the general
version of Weierstrass’ Theorem [12], which states that φ has
a minimum point if φ is a closed2 proper3 function and has
a nonempty and bounded level set. From duality theory it is
known that φ is lower semicontinuous, and this guarantees the
closedness of φ. For all λ < 0, φ(λ) = ∞ holds since the
first term in (13) is infinite, ∞. For all λ ≥ 0, the first term
in (13) is finite, and an optimal solution exists as in (2). The
second term in (13) is also finite, and an optimal solution exists
because of the compactness of X . Thus, if λ∗ exists, λ∗ is a
nonnegative number and (g∗, z∗, d∗) also exists. (This implies
that d ≤

∑
j gj is an effective constraint.) Let us choose γ ∈ R

so that the level set L = {λ | φ(λ) ≤ γ} ∈ (0,∞) is non-
empty. From (13), we have

φ(λ) ≥ u(0) + λ
∑

jMj − (
∑

jCj(Mj) +
∑

jSj)

2A function f is said to be closed if epi(f) is a closed set.
3A function f is said to be proper if there exists x ∈ Rn such that f(x) ̸=

∞ and there does not exist x′ ∈ Rn such that f(x′) = −∞.

for any λ. The right-hand side of the inequality is derived by
setting d = 0, gj = Mj , and zj = 1 to (13). There exists
a sufficiently large λ̂ > 0 such that φ(λ̂) > γ. Hence, L is
bounded, and the conditions on the existence of a minimum
point of φ are satisfied.

The remaining parts can be obtained by mimicking the
argument in [6]. The second term in (13) is written as

max
η,(g,z)∈X

{
λη −

{∑
jCj(gj) +

∑
jSjzj

}
| η =

∑
jgj

}
= max

η
{λη − v(η)} = vc(λ),

where vc is the convex conjugate function of v. Problem (12)
can be expressed as

min
λ

φ(λ) = min
λ

max
d≥0

{u(d)− λd+ vc(λ)}

= max
d≥0

min
λ

{u(d)− λd+ vc(λ)}

= max
d≥0

{u(d)− vcc(d)},

where vcc is the biconjugate function of v, i.e., the convex
conjugate function of vc. The second equality holds from [12,
Prop. 2.6.4]. To prove 3), we obtain the following result for
all d ≥ 0:

vcc(d) = sup
λ
{dλ− vc(λ)}

≥ dλ∗ − vc(λ∗)

= dλ∗ − vc(λ∗) + λ∗d∗ − λ∗d∗

= vcc(d∗) + λ∗(d− d∗).

This implies that λ∗ is a subgradient of vcc at d∗. Since vcc =
vh holds (see [12]), this completes the proof.

Proposition 3 implies that λ∗ minimizes the uplift payment
with the demand d∗. Thus, it is reasonable to choose λ∗ as a
price.

V. SUBGRADIENT METHOD

The algorithms presented in [10], [11] cannot be applied to
(12) because of the difference between the pricing models. In
this section, therefore, we describe a subgradient pricing algo-
rithm for (12). Recall that the dual function φ : R → (−∞,∞]
is defined as (13). φ can be decomposed into independent
maximizing functions:

φ(λ) = φd(λ) + φs(λ),

φd(λ) = max
d≥0

u(d)− λd, (14)

φs(λ) = max
(g,z)∈X

λ
∑

jgj − {
∑

jCj(gj) +
∑

jSjzj} (15)

The subgradient of φ at λ̂ is given by∑
jgj(λ̂)− d(λ̂) ∈ ∂φ(λ̂), (16)

where d(λ̂) (or gj(λ̂), for all j) is an optimal solution of
(14) (or (15)), with λ = λ̂ (see [12]). Since (14) and (15)
corresponds to problem (1) and (3), respectively, the ISO
can make the consumer and supplier solve (14) and (15),
respectively, by sending λ̂ as a price. This allows the ISO to
obtain

∑
jgj(λ̂) and d(λ̂), and hence, it can use subgradient

methods to solve (12) in the electricity market.
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The following is an iterative algorithm for solving (12).

Algorithm 1: Set the step size γk > 0 (k = 1, 2, ..., N).

1) The ISO sets the initial price λ0.
2) According to the given price λk, the consumer and

supplier adjust their respective demand and supply
plans by using the following update steps:

dk ∈ arg max
d≥0

u(d)− λkd,

(gk, zk) ∈
arg max
(g,z)∈X

λk∑
jgj − {

∑
jCj(gj) +

∑
jSjzj}.

3) The ISO updates the price as

λk+1 = λk + γk(dk −
∑

jg
k
j ).

4) Repeat steps 2 and 3 N times. The ISO then fixes the
price λ = λN . The scheduled levels of production and
load are d = dN .

It is proved in [12] that the subgradient method with an
appropriate step size generates a sequence {λk} which con-
verges to an optimal solution λ∗. We can obtain the necessary
and sufficient optimality conditions for (12) by modifying the
optimality conditions of (9) in [10]. However, to check these
optimality conditions, we have to solve an additional convex
quadratic program [10, eq.(12)] at each iteration. In addition,
our algorithm requires the supplier to solve a mixed integer
problem in Step 2 every iteration. These calculation costs
may be high. In the following section, we demonstrate that
our algorithm reaches sufficiently small uplift payments in a
realistic number of iterations without the ISO having to check
the optimality conditions.

VI. NUMERICAL SIMULATIONS

A. Problem settings

Here, we present numerical simulations that confirm the
efficiency of our pricing model and algorithm in reducing
uplift payments. We assume that the ISO makes the next day’s
pricing decision hourly. We shall use the example of Gribik et
al. [6] as shown in the following table.

TABLE I. EXAMPLE OF THREE GENERATORS IN [6]

Generators
Capacity(MW) A B C

Fixed Cost($) 0 6000 8000
Var cost1($/MW) 100 65 40 25
Var cost2($/MW) 100 110 90 35

The numerical algorithms were written in R language
version 3.0.0. The GNU Linear Programming Kit package of
version 0.3-10 was used for solving the linear programming
and mixed integer programming problems.

Figure 2 illustrates four different cost functions. ‘UCP’
means the minimum cost function v(y) of (9). ‘Dispatchable’
means the optimal value function vd(y) of the continuous
relaxation model of UCP; i.e., the model replaces the 0-1
integer constraints zj ∈ {0, 1} in (9) by 0 ≤ zj ≤ 1 for all j.
The Dispatchable pricing model in [6] uses the marginal cost
of vd(y) as a price. We used this model in the comparison
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Fig. 2. Cost functions.

of the uplift payments. ‘No Startup’ means the minimum
cost function that ignores the startup cost of the generators.
Furthermore, we used the convex cost function vq(y) := 0.1y2

as a quadratic approximation to No Startup.

Following [4], we used the hourly demand function,

Dt(λ) = µ1d1,t + µ2(1 + δ2,t)d(λ), (t = 1, 2, . . . , 24),

where µ1, µ2 are positive parameters, d1,t is a positive
constant, and δ2,t is a random variable distributed with
N (0, 0.012). The first term represents the minimum necessary
demand, and the second term represents the swing in demand
depending on prices. We used actual hourly demand data of
the Tokyo Electric Power Company from 0:00 to 23:00 August
30, 2012 [13] as d1,t (t = 1, 2, ..., 24). µ2 was arbitrarily fixed
in order to take account of price elasticity. µ1 was adjusted so
that the sum of simulated hourly demands Dt(λ

N
t ) remained

nearly equal to the sum of the scaled actual hourly demands
d1,t/100 (t = 1, 2, . . . , 24), i.e.,∑24

t=1
Dt(λ

N
t ) ≈ 1

100

∑24

t=1
d1,t.

We defined a logarithmic utility function u with a positive
parameter a:

u(d) = a log(d).

a was adjusted so that the sum of d(λN
t ) =

max{0, {d | u̇(d) = λN
t }} as in (2) remained nearly

equal to the sum of the scaled actual hourly demands
d1,t/100 (t = 1, 2, . . . , 24), i.e.,∑24

t=1
d(λN

t ) ≈ 1

100

∑24

t=1
d1,t.

We set the parameters as follows: N = 100, a = 3.9×104,
µ1 = 0.008 and µ2 = 0.2.

B. Simulation results

First, let us compare the uplift payments of our model
with the convex cost models in [3], [4]. The convex cost
model uses vq(y) as cost function, and its electricity price
is given by a locational marginal price (LMP). The results are
summarized in Fig. 3. The simulation results for 24 hours are
plotted as points. Each point shows the relation between the
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Fig. 4. Uplift payments at each iteration.

demand Dt(λ
∗
t ) and uplift payment Π(λ∗

t , Dt(λ
∗
t )) for hourly

optimal prices λ∗
t (t = 1, 2, . . . , 24). The optimal prices λ∗

t for
our model were calculated with (12), whereas optimal prices
for the existing convex cost model were calculated as in [4].
The solid (dashed) line illustrates the uplift payments with
the convex hull model (dispatchable model). In the existing
convex cost model, the uplift payments accrue as much as in
the dispatchable model. On the other hand, the uplift payments
determined by our model are less than half that of the existing
model.

Next, let us investigate the behavior of the subgradient
algorithm. As we noted in Section V, the existing algorithms
cannot be applied to our model. Thus, we can only show
results for our algorithm. We choose the step size γk =
1/10k (k = 1, 2, . . . , N) and initial price λ0

t = 100[$] (t =
1, 2, . . . , 24). Fig. 4 shows the uplift payments versus demand
Dt for the price after the k-th iteration λk

t (t = 1, 2, . . . , 24,
k = 1, 5, 10, 100). We can see that the subgradient method
generates a sequence which reaches sufficiently small uplift
payments in a few iterations. Consequently, although our
market model requires the supplier to solve a mixed integer
problem every iteration, it may not be much of a disadvantage.

VII. CONCLUSION

We developed an electricity market model that takes into
account both the demand response and startup costs of gener-
ators. Because of the startup costs, uplift payments, which are
disadvantageous to the supplier, may occur. To reduce uplift
payments, we devised a pricing model and algorithm based on
a subgradient method. We theoretically proved that our pricing
model produces the convex hull price, which minimizes the
uplift payment for an equilibrium demand. Numerical results
showed the advantage of our pricing model over existing
locational marginal pricing models with convex cost functions.
Our pricing algorithm generated electricity prices that entail
sufficiently small uplift payments in a realistic number of
iterations.

We are planning to extend our model to a multi-agent and
multi-period one with network constraints as in [5].

ACKNOWLEDGEMENTS

This research was supported by JST-CREST.

REFERENCES

[1] M. Albadi and E. El-Saadany, “A summary of demand response in
electricity markets,” Electric Power Systems Research, vol. 78, no. 11,
pp. 1989–1996, Nov. 2008.

[2] New York ISO, “NYISO (About NYISO – understanding the mar-
ket – the energy market),” http://www.nyiso.com/public/about nyiso/
understanding the markets/energy market/index.jsp, accessed: 2013-
05-11.

[3] M. Roozbehani, M. A. Dahleh, and S. K. Mitter, “Volatility of power
grids under real-time pricing,” IEEE Transactions on Power Systems,
vol. 27, no. 4, pp. 1926–1940, Nov. 2012.

[4] Y. Miyano and T. Namerikawa, “Load leveling control by real-time
dynamical pricing based on steepest descent method,” in SICE Annual
Conference, Akita University, Akita, Japan, 2012, pp. 131–136.

[5] W. Hogan and B. Ring, “On minimum-uplift pricing for electricity
markets,” Harvard University, Tech. Rep., 2003. [Online]. Available:
http://www.hks.harvard.edu/fs/whogan/minuplift 031903.pdf

[6] P. R. Gribik, W. W. Hogan, and S. L. Pope, “Market-clearing
electricity prices and energy uplift,” Tech. Rep., 2007. [Online].
Available: http://www.hks.harvard.edu/fs/whogan/Gribik Hogan Pope
Price Uplift 123107.pdf

[7] M. Bjørndal and K. Jörnsten, “Equilibrium prices supported by dual
price functions in markets with non-convexities,” European Journal of
Operational Research, vol. 190, no. 3, pp. 768–789, Nov. 2008.

[8] B. Zhang, P. B. Luh, and E. Litvinov, “On reducing uplift payment
in electricity markets,” in Power Systems Conference and Exposition,
2009. PSCE ’09. IEEE/PES, Mar. 2009.

[9] R. P. O’Neill, P. M. Sotkiewicz, B. F. Hobbs, M. H. Rothkopf,
and W. R. Stewart, “Efficient market-clearing prices in markets with
nonconvexities,” European Journal of Operational Research, vol. 164,
no. 1, pp. 269–285, Jul. 2005.

[10] G. Wang, U. V. Shanbhag, T. Zheng, E. Litvinov, and S. Meyn, “An
extreme-point subdifferential method for convex hull pricing in energy
and reserve markets–Part I: Algorithm structure,” IEEE Transactions
on Power Systems, vol. PP, no. 99, 2013, early access articles, DOI:
10.1109/TPWRS.2012.2229302.

[11] C. Wang, P. B. Luh, G. Paul, L. Zhang, and T. Peng, “The subgradient-
simplex based cutting plane method for convex hull pricing,” in Power
and Energy Society General Meeting, 2010 IEEE, Jul. 2010.

[12] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar, Convex Analysis and
Optimization, ser. Optimization and Computation Series. Athena
Scientific, 2003.

[13] Tokyo Electric Power Company (TEPCO), “TEPCO electricity fore-
cast,” http://www.tepco.co.jp/en/forecast/html/index-e.html, accessed:
2013-04-29.

IEEE SmartGridComm 2013 Symposium - Demand Side Management, Demand Response, Dynamic Pricing

156


