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Abstract: In repetitive motions, Actuator with Adjustable Stiffness (AwAS) can realize resonance and largely reduce
energy consumption thanks to its ability to change the level of stiffness and adjust its natural frequency to the desired
motion’s frequency. In conventional method, an ideal stiffness value is calculated from frequency of the target motion
and parameters of AwAS beforehand. This is an off-line system. Extremum-seeking control allows AwAS to optimize
its stiffness on-line. Therefore, even if the frequency of the desired motion or parameters of AwAS change in unexpected
time, it can optimize the stiffness and realize energy saving continuously. It was confirmed by numerical simulations.

Keywords: energy saving, adjustable stiffness, resonance, extremum-seeking control.

1. INTRODUCTION

Recently, industrial robots came to be seen in various
situations. Thanks to these robots, people don’t have to
do dangerous works and mass production was realized
because of high work efficiency. But, a new problem is
occurring. It’s an energy problem. In order to operate the
robots, large amount of energy is required. So when it
comes to running them for a long time, the amount of en-
ergy consumed is immeasurable. Therefore, reducing the
energy consumption of the robots, that is “energy saving”
attracts attention.

Repetitive motions are common movements of robots.
If an actuator gives all energy to them to achieve these
motions, a lot of energy will be consumed. Energy saving
means to reduce the energy consumption of the actuator,
specifically, converts potential energy into kinetic energy
and uses it for achieving the motion instead of the energy
of the actuator. Familiar examples of this are pendulum
motion and human walking. Pendulums use gravitational
potential energy as kinetic energy and can continue pe-
riodic motion without external force. Also it is known
that humans use muscles and tendons efficiently and are
walking in energy conservation. With reference to these
phenomena, the research of energy saving, such as the
passive dynamic walker [1, 2], is actively conducted.

In this paper, energy saving using an Actuator with
Adjustable Stiffness (AwAS) [3-5] is presented. AwAS is
an actuator which the elastic element is attached to. Us-
ing this actuator, the robots have a natural frequency. If
the natural frequency matches the frequency of the target
periodic motion, the resonance phenomenon will be de-
rived. When resonance is realized, theoretically, the tar-
get motion can be achieved without the energy of the ac-
tuator because there is enough energy (potential energy)
thanks to the elastic element [6, 7]. With this approach,
considerable energy saving is expected.

Moreover, in this study, “extremum-seeking control”
[8] is applied to the control system. It allows AwAS to

optimize its stiffness on-line. Thus, even in case the fre-
quency of the target motion or parameters of AwAS are
time-varying, it is able to make stiffness ideal value and
continue achieving energy saving. It was shown by nu-
merical simulations. To evaluate energy efficiency, an
energy cost function was used.

From these results, we expect that AwAS can save en-
ergy even when the parameters of it are unknown or the
optimize stiffness value is impossible to be calculated be-
cause the desired periodic motion is very complex.

The rest of this paper is structured as follows. In sec-
tion 2, the design of AwAS is explained. Optimal stiff-
ness value to realize resonance is calculated in section 3
and the conventional energy saving system using AwAS
is shown in section 4. The principle of extremum-seeking
is stated in section 5 and the optimal stiffness based on the
theory of extremum-seeking is shown in section 6. The
proposed system is shown in section 7. The numerical
simulations are presented in section 8 while the conclu-
sion and future work are discussed in section 9.

2. AWAS

AwAS has a structure which is shown in Fig.1.

 

Fig. 1 AwAS



It consists of two links, the intermediate link and the
output link, and two springs which are connected on one
side to the intermediate link and on the other side to
the output link. Furthermore, two motors are attached
to AwAS. The motor 1 (M1) can rotate the intermediate
link, and the motor 2 (M2) can move the position of the
springs (control the length of the lever arm) to regulate
the stiffness of AwAS. At first, we explain the mecha-
nism to change the stiffness of AwAS. When the position
of the links is as shown in Fig.1, the resultant force from
the elastic elements is given by

F = Ks(p+ δX)−Ks(p− δX)

= 2KsδX = 2Ksr sin δθ.
(1)

p is the spring’s pretension,δx is the spring’s deflection,
andKs is the spring constant of the elastic elements. The
resultant torque applied to the intermediate link by the
force is calculated as

T = Fr cos δθ = 2Ksr
2 sin δθ cos δθ. (2)

So, the stiffness of AwAS can be shown by partial differ-
entiation of this torque with respect to the angular deflec-
tion δθ

K =
∂T

∂(δθ)
= 2Ksr

2(2 cos2 δθ − 1). (3)

From Eq.(3) , it is found that AwAS can change the stiff-
ness by regulating the position of the springsr.

AwAS can be physically modeled as shown in Fig. 2.

 

Fig. 2 Physical model of AwAS

Then, the motion equations of AwAS are given as

IM θ̈M +BM θ̇M +K(θM − θL) = TM . (4)

(IL +ML2)θ̈L +BLθ̇L +K(θL − θM ) = 0. (5)

Eq.(4) and Eq.(5) mean the motion equation of the inter-
mediate link and the output link respectively. Each pa-
rameter of these equations and Fig.1 is described in Table
1.

3. OPTIMAL STIFFNESS (THEORY OF
RESONANCE)

When the target motion is a periodic motion and its
frequencyf is constant, the resonance phenomenon will
be able to be realized if the AwAS’s natural frequencyfn
matchesf . The stiffness of AwAS which lead to reso-
nance is denoted as the optimal stiffness valueKd in this
time.Kd is calculated as follows.

Table 1 Description of the parameters

IM inertia of the intermediate link
IL inertia of the output link
BM damping at the intermediate link side
BL damping at the output link side
θM position of the intermediate link
θL position of the output link
δθ angular deflection
TM motor torque
K joint stiffness
M mass attached to the output link
L output link length
O axis of rotation
r position of the springs (lever arm)

To begin with, calculatefn (simplify the calculation,
BL is assumed not to exist). It is shown as

fn =
1

2π

√
K

(IL +ML2)
. (6)

To derive resonance,fn should be equal tof . Thus,Kd

is given by

Kd = 4π2f2(IL +ML2). (7)

The springs’ position which realizeKd is designated the
optimal positionrd, and it is shown as

rd =

√
Kd

2Ks(2 cos2 δθ − 1)
. (8)

4. ENERGY SAVING WITH AWAS
(CONVENTIONAL METHOD)

The conventional control system is shown in Fig.3.
The desired motionθL and the optimal stiffnessKd cal-
culated fromθL are used as external signals.

 

Fig. 3 Schematic diagram of the control system

In the conventional method, it is necessary that the fre-
quency of the motion and the all parameters of AwAS are
known.



The parameterσ represents the rotation angle of the
motor 2. As stated in section 2,r is regulated by the
motor 2. Specifically, the rotary motion is converted into
the linear motion by the ball screw and the springs move.
The relation betweenσ andr is

σ =
2π

ρ
r. (9)

Whereρ denotes the pitch of the ball screw. Then, the
optimal rotation angle of the motor 2σd is calculated as

σd =
2π

ρ

√
Kd

2Ks(2 cos2 δθ − 1)
. (10)

Each motor is controlled by the PD controller. The
motor 1 has an additional active damping termkldθ̇L to
attenuate the link oscillation, so the reference signal of
the motor 1TM is given by

TM = kmp(θMd−θM )+kmd(θ̇Md−θ̇M )+kldθ̇L. (11)

And the reference signal of the motor 2 is

σK = kp(σd − σ) + kd(σ̇d − σ̇). (12)

Using this system, AwAS can derive the resonance and
achieve the target motion with a little energy. But, when
the desired motion’s frequency and AwAS’s parameters
are subject to change, AwAS can’t adjust its stiffness to
the optimal value on-line. Therefore, AwAS isn’t able
to continue to derive the resonance and realize energy-
saving.

The concrete example is shown in Figs.4 to 6. The
desired motion isθLd = 0.2 sin(2πft)[rad]. At first,
the AwAS began to oscillate withf = 2.5[Hz], M =
1.0[kg]. After 50 seconds,f was changed to4.0[Hz].
After another 50 seconds,M was changed to2.0[kg].
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Fig. 4 Stiffness of AwASK(red) and optimal stiffness
Kd(blue)

As shown in Fig.4, the stiffness of AwAS isn’t opti-
mized whenf or M changes. For this reason, the inter-
mediate link oscillates widely so AwAS uses much en-
ergy (Fig.5). Furthermore, from Fig.6, it is known that
the desired motion isn’t achieved after 50 seconds.

 

0 50 100 150

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time[s]

th
et

aM
[r

ad
]

Fig. 5 Intermediate link trajectoryθM
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Fig. 6 Output link trajectoryθL

5. EXTREMUM SEEKING CONTROL

Extremum-seeking control has a structure shown in
Fig.7. It adjusts the parameter to make the cost func-
tion J minimum or maximum value continuously. In this
case, the parameter isσ.

 

Fig. 7 Extremum-seeking control

Then, we state the theory of extremum-seeking con-
trol. At first, we posit the form of the cost function as

J = f(σ) = f∗ +
f ′′

2
(σ − σ∗)2. (13)

Wheref∗ andσ∗ represents the extremum of the cost
function J and the optimal value of the parameterσ.
Whenf ′′ > 0(f ′′ < 0), J is a downwardly(upwardly)
convex function.
From Fig.7,

σ = σ̂d = a sinωt+ σ̂. (14)



When substituted into Eq.(13), gives

J = f∗ +
f ′′

2
(a sinωt+ σ̂ − σ∗)2

= f∗ +
f ′′

2
(a sinωt− σ̃)2. (σ̃ = σ∗ − σ̂)

(15)

Expanding this expression further, calculated as

J = f∗ +
f ′′a2

2
sin2 ωt− f ′′aσ̃ sinωt+

f ′′

2
σ̃2

= f∗ +
f ′′a2

4
− f ′′a2

4
cos 2ωt− f ′′aσ̃ sinωt+

f ′′

2
σ̃2.

(16)

The high pass filter removes low frequency components

ϕ =
s

s+ h
[J ]

≈ −f
′′a2

4
cos 2ωt− f ′′aσ̃ sinωt+

f ′′

2
σ̃2.

(17)

Then,ξ is given by

ξ = −f
′′a2

4
cos 2ωt sinωt−f ′′aσ̃ sin2 ωt+f

′′

2
σ̃2 sinωt.

(18)

Applying the identity

cos 2ωt sinωt =
sin 3ωt− sinωt

2
.

ξ is calculated as

ξ = −f
′′a2

8
(sin 3ωt− sinωt)− f ′′a

2
σ̃

+
f ′′a

2
σ̃ cos 2ωt+

f ′′

2
σ̃2 sinωt. (19)

There are two conditional expressions

σ̂ =
k

s
[ξ] ⇔ ˙̂σ = kξ. (20)

˙̃σ = σ̇∗ − ˙̂σ = − ˙̂σ. (21)

Considering these conditions and that the first, third, and
forth term of Eq.(19) are attenuated by an integrator, get-
ting

˙̃σ = −kξ = kf ′′a

2
σ̃. (22)

Sincekf ′′a < 0, this is a stable system. Thus,σ̃ con-
verges to 0 as time passes. In terms of the original prob-
lem, σ̂ converges toσ∗, soσ is kept within a small dis-
tance ofσ∗. As a result, the cost function converges to
around their extremumf∗.

6. OPTIMAL STIFFNESS (THEORY OF
EXTREMUM-SEEKING)

In this paper, the kinetic energy of the intermediate
link is used as a cost function.

J1 = f(σ) =

∫ t

0

1

2
IM θ̇

2
Mdt. (23)

To save energy means to reduce the energy consump-
tion of the motor 1, this is consistent with decreasing the
oscillation of the intermediate link. When the desired mo-
tion is periodic, the parameterσ which minimize this cost
function is equal to which is obtained from the concept of
resonance (Eq.(10)). This means the proposed method al-
lows AwAS to derive resonance on-line.

proof
From Eqs.(4) and (5), the relational expression be-

tween the intermediate link and the output link is

θM =
IL +ML2

K
θ̈L + θL. (24)

Accordingly, the cost function Eq.(23) is modified as

J1 =
1

2
IM

∫ t

0

{(
IL +ML2

K

)2 ...
θL

2

+
2(IL +ML2)

K

...
θLθ̇L + θ̇L

2
}
dt. (25)

Assuming the desired motion is a single frequency sine
wave

θLd = A sin(ωt+ ϕ). (26)

Then, the control system is a linear system, so the output
θL is given by

θL = B sin(ωt+ ψ). (27)

Substitute the constant stiffnessKc and Eq.(27) into
Eq.(25), calculated as

J1 =
1

2
IMB

2ω2

{(
IL +ML2

Kc

)2

ω4

−
2
(
IL +ML2

)
Kc

ω2 + 1

}∫ t

0

cos2(ωt+ ψ)dt.

(28)

The optimal stiffness valueKopt which minimize Eq.(28)
isKc which satisfies the equation

∂J1
∂Kc

=
1

2
IMB

2ω2
{
(−2)

(
IL +ML2

)2
ω4Kc

−3

+2
(
IL +ML2

)
ω2Kc

−2
}∫ t

0

cos2(ωt+ψ) = 0.

(29)



Therefore, from Eq.(29),Kopt is calculated as

Kopt =
(
IL +ML2

)
ω2

= 4π2f2
(
IL +ML2

)
.

(30)

Eq.(30) equal to Eq.(7), so to minimize Eq.(23) means to
derive resonance.

7. ENERGY SAVING WITH AWAS
(EXTREMUM-SEEKING CONTROL)

The proposed system incorporating extremum- seek-
ing control is shown in Fig.8. Compared with the con-
ventional method, the AwAS’s optimal stiffness valueKd

is removed from the external signals. This is because the
extremum-seeking control enables AwAS to optimize its
stiffness on-line. This is the main advantage of new sys-
tem.

 

Fig. 8 Schematic diagram of the proposed system

The need to calculateKd is gone, so we consider that
it is possible to achieve energy-saving even the case that
we can’t calculate the optimal stiffness value because the
target periodic motion is very complex, or the parameters
of AwAS is unknown.

8. SIMULATION RESULTS

Numerical simulations are conducted to show the va-
lidity of the proposed method.

The parameters of AwAS are shown in Table 2.

Table 2 Value of the parameters

IM 0.35[kgm2]

IL 0.1[kgm2]
L 0.34[m]
Ks 16[N/mm]
ρ 0.01[m]

The damping of each linkBM andBL are assumed to
be negligible. The parameters used in extremum-seeking
control area = −0.01, ω = 1.0, k = 80, h = 1.0,
respectively. The target motion and the simulation condi-
tion are the same as in section 4. The results are shown
in Figs.9 to 11.
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Fig. 9 Stiffness of AwASK(red) and optimal stiffness
Kd(blue)
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Fig. 10 Intermediate link trajectoryθM
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Fig. 11 Output link trajectoryθL

From Fig.9, it can be seen that the proposed method
allowed AwAS to optimize its stiffness on-line. It wasn’t
realized by the conventional method. In addition, from
Figs.5 to 6 and 10 to 11, it is known that the trajectory of
each link is obviously different. In the proposed method,
by optimizing the stiffness, the oscillation of the inter-
mediate link was suppressed and the output link achieved
the desired motion continuously. It means that AwAS re-
alized the target motion with a little energy in all condi-
tions.



Furthermore, to evaluate these results quantitatively,
we introduce the cost function as follows.

C =

∫ t

t0

(Kd −K)
2
dt. (31)

This expression indicates a gap between the optimal stiff-
ness value and an actual AwAS’s stiffness value. When
C is small, the gap is small too. The values ofC are sum-
marized in table 3.

Table 3 Value ofC

Time[s] conventional (×103) proposed (×103)
0˜50 0.4068 12.35

50˜100 344.2 17.91
100˜150 1217 11.57

total 1561 41.83

From this list, the effectiveness of the proposed
method is evident. Table 4 shows the energy consump-
tion in two cases, using a common actuator and using
AwAS.

Table 4 Energy consumption in steady state

conditions common actuator [W] AwAS [W]
f = 2.5,M = 1.0 11.98 5.660
f = 4.0,M = 1.0 58.48 46.42
f = 4.0,M = 2.0 120.1 111.9

According to this table, it is clear that AwAS used less
energy than a common actuator. Depending on the con-
ditions, AwAS achieved energy saving up to 53%.

9. CONCLUSION

In this paper, energy-saving using AwAS was pre-
sented. When the desired motion is a periodic motion,
AwAS can adjusts its stiffness and derive resonance.
When resonance is derived, almost all energy which is
needed to achieve the desired motion is generated by the
elastic elements so the actuator uses little energy. In the
conventional method, AwAS can realize energy-saving
only when the condition (the target motion’s frequency or
the parameter of AwAS) is constant. But if the condition
is changed, the system doesn’t continue to save energy
because it doesn’t have an ability to optimize the stiff-
ness of AwAS according to the condition. Therefore, we
introduced “extremum-seeking control” into the system.
It always adjusts the parameter to make the cost func-
tion minimum or maximum value constantly. Extremum-
seeking control enables AwAS to optimize its stiffness
on-line. So, even if the condition is changed, AwAS can
continue to achieve energy-saving. These were shown by
the numerical simulations. In future work, we will try to
realize energy saving when the target motion is a complex
(multi frequency) motion.
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