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Abstract: The Model Reference Control System (MRACS) is the control system tuning its controller to match the controlled 

system to the reference model designed in the\system adaptively. Conventional MRACS assumed the order of integration or 

derivative as integer order. By introducing fractional order integration or derivative (Fractional Calculus,) MRACS can use the 

arbitrary order adaptive control law and control the complex system described by fractional calculus like visco-elastic body. In 

this paper, we improved the transient response of MRACS and modified MRACS to be able to control the plant even though the 

model matching condition was not satisfied by applying fractional calculus to adaptive transfer function of MRACS, and we 

constructed the MRACS for the fractional calculus system. 
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1 INTRODUCTION 

Recently, many researchers study the control theory 

applying fractional calculus (fractional order derivative or 

integration) to the controller or the controlled object.
[1],[2]

 

Fractional calculus can describe many complicated systems 

which can not be described simply with conventional integer 

order derivative or integration.
[3]

 In addition, fractional 

calculus can construct the fractional order integrator. So, by 

using fractional calculus system in controller, we can design 

the new control law containing arbitrary order integration. 

Model Reference Control System (MRACS) is the control 

system tuning its controller to match the controlled system to 

the designed reference model if plant parameters are 

unknown, but conventional MRACS don’t consider the 

system described by fractional order derivative. Inaddition, 

to design the MRACS, the assumption of the relative order of 

the controlled object is needed in order to stabilize the total 

adaptive control systems. If we design the MRACS without 

the assumption for the relative order of the controlled object, 

we must use augmented error method, high order estimator, 

Back stepping, or I&I. 

In this paper, by introducing fractional calculus system to 

the adaptive control law, we can get the stable numerical 

results whose transient performance is good in the case of 

lack of the model matching condition and improve the 

transient response of controlled object. In addition, by 

considering the MRACS extended to fractional order, we 

designed MRACS for the fractional calculus system. 

 

 

 

 

 

 

 

 

 

2 FRACTIONAL CALCULUS 

2.1 Fractional order derivative 

The fractional order Rieman-Liouville derivative Eq. (1) 

is given by 
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where q is the order of the fractional derivative such that 

1n q n   , n is the integer, and ( )x is the gamma function, 

which is the function expanding the  factorial to arbitraly 

order.  

Considering the following function to show the validness 

of the definition of Eq. (1) and Eq. (2),  
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1[ ( )]q

tD f t  and 2[ ( )]q

tD f t  were shown in Fig. 1 and Fig. 

2 with changing the order of the fractional derivative q. 

 

 
Fig. 1 The function of 1[ ( )]q

tD f t .  
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Fig. 2 The function of 2[ ( )]q

tD f t . 

 

In Fig. 1, the fractional order Rieman-Liouville derivative 

expresses the phase shift derived from the derivation of the 

sinusoidal function analogically. This feature has the 

important meaning. By Fourier transform, any function can 

be converted to the frequency domain spectrum. Considering 

the derivative as the operation to shift the sinusoidal 

functions’ phase with multiplying its angular frequency, it 

means that any function can be analogically differentiated by 

the fractional order Rieman-Liouville derivative. As shown 

in Fig. 2, the fractional order Rieman-Liouville derivative 

expresses analogical derivative of 
2( )f t  though it is not 

sinusoidal function. 

2.2 Approximation method of the fractional order 

transfer function 

In the case of constructing the control system using the 

fractional order transfer function, it requires a lot of time to 

calculate the covolve from the initial time.  

For reducing the time on calculation, Manabe proposed 

the approach to approximate the fractional order transfer 

function to the superposition of the integer order transfer 

functions on the bode diagram around a specified frequency 

domain
[4]

.  
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Fig. 3 The approximation of 1/ qs  at 1 2q  . 

 

Fig. 3 shows the approximation of 1/ qs  at 1 2q  .  

Using  shown in Fig. 3, the transfer function of 1/ qs  at 

1 2q   can be approximated to  
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1 2    is the approximated frequency domain.  

In the case of 1/ s  at 0 1  , the approximated transfer 

function can be obtained by multiplying Eq. (5) by s. It 

becomes  

1 1

1 1 1
1 2

1

j k
i i

q
i ii i

s a b s
s q

s s s b a s
 

 
     

 
   

where 1q   . 

3 MRACS 

3.1 Model Reference Adaptive Control System 

Model reference adaptive control system (MRACS) is the 

control method tuning the controller to match the controlled 

system containing unknown parameters with the designed 

reference model adaptively. 

Consider the single input single output, continuous time, 

linear, and time invariant system;  
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where ai and bi are unknown parameters. 

Based on this controlled object, we designed the following 

reference model;  
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where aMi and bMi are designed parameters.  

  For the plant Eq. (14) and the reference model Eq. (16), we 

make the following assumptions: 

(A1) The order of controlled object n and relative order of 

controlled object n m  are already known and 

M Mn m n m     .  

(A2) ( )B s  is a stable polynomial.  

(A3) The sign of the high frequency gain k is known a priori.  

(A4) Without loss of generality, we assume 0k  .  

  To guarantee the uniqueness of the solution of the system 

controlled adaptively for matching the plant’s output y(t) 

with the reference model’s output yM (t), the following 

lemma has been used.  

 

Lemma 1: Considering  order monic polynomial ( )C s  and 

1n   order monic polynomial ( )H s , ( )R s , ( )BR s  and ( )S s  

satisfying following equations are uniquely determined.   
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This is called “Model matching conditions.” In this paper, 

C(s) and H(s) are designed, and R(s) and S(s) are tuned 

adaptively. Fig. 4 shows the construction of the system 

satisfying the model matching condition.  
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Fig. 4 Construction of the system satisfying the model 

matching condition. 

 

When the model matching condition is satisfied, the 

control input u(t) can be expressed as following equation.  
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where we define unkown parameters and regressive vector as 

follows. 
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And then, the output of the controlled object y(t) can be 

described as follows. 
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Defining the tracking error as ( ) ( ) ( )Me t y t y t  ,  
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The parameters of controlled object is unknown, so we 

can not use  as control input. By replacing unkown 

paremeters with adaptive parameters law, control input ( )u t  

is constructed as following equation. 
Tˆ( ) ( ) ( )u t t t   

Substituting Eq. (24) for Eq. (25), ( )e t  is replaced with the 

following equation, 
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where ( )t  is the error of the parameter difined as 

ˆ( ) ( )t t    . If 1  , with using 

( ) sgn( ) ( ) ( ), 0Tt k t e t         

as the adaptive law estimating parameters, boundedness of 

all signals in the system and global asymptotic stability of the 

tracking error can be guaranteed. In Eq. (27), the adaptive 

transfer function uses integer order integration as I s . Fig. 5 

shows the construction of the MRACS. 
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Fig. 5 Construction of the MRACS 

3.2 Adaptive control law using fractional integrator 

In this paper, we propose a new adaptive law using 

fractional calculus replacing integer order integration with 

fractional order integration as 
( )( ) sgn( ) ( ) ( ), 0q Tt k t e t       

In Eq. (28), the adaptive transfer function shown in Eq. (27) 

is replaced with I qs .  

Fig. 6 shows the Nyquist plot of the ideal 1/2 order 

integrator.  
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Fig. 6 The Nyquist plot of the ideal 1/2 order integrator. 

 

This transfer function can be seemed to be the integrator 

which has the infinite gain in the low frequency region. In 

addition to this characteristic, this transfer function can set a 

limit to the phase shift less than 90  .  

So, replacing the integer order integrator with the 

fractional order integrator, the phase margin can be 

guaranteed, the problem from the relative order can be eased, 

and the transient behavior can be improved. 

3.3 MRACS for the fractional calculus system 

Fractional calculus can descrive the complex system like 

visco-elastic body’s response. In this paper, we propose a 

MRACS for the system descrived by fractional calculus. 

 Considering the following controlled object containing 

fractional order derivative. 
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where w  means the operation of fractional order derivative 

and this plant satisfies assumptions descrived as (A1) – (A4). 

Based on this controlled object, we designed the following 

reference model extended to the fractional order system;  
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where aMi and bMi are designed parameters. 

 By replacing s with w , model matching condition can be 

expressed as follow. 

 

 

Lemma 2: Considering  order monic polynomial ( )C w  and 

1n   order monic polynomial ( )H w , ( )R w , ( )BR w  and ( )S w  

satisfying following equations are uniquely determined.   
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By designing appropriate C(w) and H(w), we can construct 

the MRACS for the fractional calculus system. 

4 NUMERICAL SIMULATION  

4.1 Numerical simulation of the approximated 

fractional integrator 

We calculated the fractional order integrator (1/2 order 

integrator) approximated by Manabe’s approach as q = 1.5,  

= 3, j = k = 1 for implementation. We obtained the following 

function.  

0.5
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, 0.032 31.6,

0.126 1 0.501

s s

s s s
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Fig. 7 shows the numerical simulation of the Bode 

diagram of 1/2 order integrator  0.51/ s  approximated by 

Manabe’s approach.  

 
Fig. 7 Bode diagram of approximated 1/2 order integrator.  

 

As shown in Fig. 7, this approximated fractional order 

integrator has the characteristic of the 0.51/ s  at 

0.032 31.6  .  

Fig. 8 shows the numerical simulation of its Nyquist plot. 

 

 
Fig. 8. Nyquist plot of approximated 1/2 order integrator.  

 

The phase change of this approximated 1/2 order 

integrator is limited in 38.7   and its gain is 12.0 dB at 0s  . 

The approximated fractional integrator’s gain at 0s   can be 

increased by increasing the order of the 

integrator.  j k Calculating the approximated 1/2 order 

integrator as j = k = 5 and  = 3, its gain at 0s   became 

about 60 dB. 

4.2 Numerical simulation of the fractional order 

MRACS 

To show the effectiveness of the adaptive law using the 

fractional order integrator, we compared the integer order 

adaptive transfer function ( 1)q   with fractional order 

adaptive transfer function ( 0.5)q   by simulating in 

following two cases. Fig. 9 shows the construction of the 

fractional order MRACS designed for the numerical 

simulation.  
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Fig. 9 Construction of the fractional order MRACS designed 

for the numerical simulation. 

 

 

Case1: Satisfying model matching condition. 
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Tracking errors and control input of 1q   and 0.5q   

were shown in Fig. 10 and Fig. 11. 
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Fig.10 The tracking errors in case1.  
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Fig.11 Control input in case1.  

 

As shown in Fig. 10, by  using fractional calculus in the 

adaptive transfer function, the the transient response of the 

control system was improved.  

Case2: Dissatisfying model matching condition. 
2( ) 1 ( 0.5), ( ) 1 ( 1) , 1000MG s s G s s      , ( ) sinr t t  

Tracking errors and control input of 1q   and 0.5q   

were shown in Fig. 12 and Fig. 13. 
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Fig.12 The tracking errors in case2.  
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Fig.13 The tracking errors in case2.  

As shown in Fig. 12, the response of the system was 

unstable in 1q  .  However, in 0.5q  , the internal signal of 

the system was stabilized without satisfying model matching 

condition. 

4.3 Numerical simulation of MRACS for fractional 

calculus system 

To show the effectiveness of MRACS for the system 

containing fractional order derivative, we constructed the 

MRACS and did the numerical simulation in case 
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In Fig. 16, we showed controlled response of fractional 

calculus system. 
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Fig. 16 output of fractional order plant 

 

As shown in Fig. 16, by designing appropriate C(w) and 

H(w), fractional calculus system can be controlled by 

MRACS extended to fractional order derivative. 

 

5 Conclusion 

In this paper, we applied the fractional calculus to the 

MRACS. By applying fractional integration to adaptive 

transfer function, we can improve the transient response and 

stabilize the system dissatisfying model matching condition. 

In addition, by extending MRACS to the fractional order 

derivative, we can construct MRACS for the system 

containing fractional order derivative. 
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