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Abstract: In this paper, we propose a fuel consumption optimization technique for a power-split hybrid electric vehicle
(HEV) via gain-scheduled model predictive control. The control algorithms for the hybrid powertrain choose the power
split between the internal combustion engine and electric motor of the HEV in order to minimize the fuel consumption.
The operating conditions of the HEV change during driving in real time by road conditions and driver demand. Therefore,
it is necessary to have optimal control in real time and to consider the time-varying motor condition. We model an HEV
and propose a gain-scheduled model predictive control for a power-split HEV. Using the proposed technique, the optimal
fuel consumption for a power-split HEV is achieved. Finally, the proposed approach is validated by numerical simulations.
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1. INTRODUCTION

In recent years, the number of cars has been increasing
in the world. An environmental technology for cars has
been developed in response to environmental concerns
and problems of rising fuel cost. The hybrid electric ve-
hicle (HEV) is provided by electric motors and an inter-
nal combustion engine and is reduced emissions and fuel
consumption by combining their output[1]. The improve-
ment of fuel economy is achieved by using surplus energy
that is recovered from engine power and the regenerative
energy reused, as shown in Fig. 1, and allow running a
smaller combustion engine in a higher efficiency region.
However, the control of the HEV with a battery and two
driving forces is more complex than a conventional car.

Therefore, the control of the HEV to optimize fuel
consumption is being actively studied [2][3][4][5][6].
Therein, the model predictive control [2] is believed to
be an effective means. However, in previous studies, the
state of the battery, which depends on the varying motor
speed, cannot be simulated. The controlling the battery
within its physical constraints is necessary to express the
varying state of motor speed.

In this paper, we propose a fuel consumption opti-
mization technique for a power-split HEV as shown in
Fig. 2 via gain-scheduled model predictive control [7].
We make possible an optimal control for a variable state
system and represent the varying state by combining
gain-scheduled model with conventional model predic-
tive control. Thus, it is possible to optimize fuel con-
sumption for an HEV considering not only the state of
the engine, EM1, and EM2 but also the state of the bat-
tery. The scheduled parameter used in the gain-scheduled
control is obtained by linear interpolation between the
minimum and maximum of the EM1 and EM2 rotational
speed.

At first, we model a power-split HEV and describe
about the general model predictive control. Then the
gain-scheduled model predictive control proposes. Fi-

† Hitoshi Iyama is the presenter of this paper.

nally, the proposed control law is validated by a numeri-
cal simulation.

2. PROBLEM SETTING

2.1. Fuel Economy Optimization Problem
In this paper, the fuel economy optimization problem

is considered for the optimal distribution of power in the
HEV powertrain to maximize fuel economy and combus-
tion efficiency. This problem needs to consider not only
the optimization of fuel consumption but also the con-
straint of the battery state, drivability.

2.2. HEV Modeling
In this section, we consider the model of a power-split

HEV as shown in Fig. 2.

Fig. 1 Improvement of fuel economy

Fig. 2 Power-split HEV
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2.2.1. Vehicle Dynamics
The motion of the HEV is formulated as
Mv̇(t) = fd(t)− fa(t)− fr(t)− fg(t) (1)

where

fd(t) =
τd(t)

Rw
(driving force), (2)

fa(t) =
1

2
ρAfCdv

2(t) (air resistance), (3)

fr(t) = µMg cos(θ(t)) (rolling resistance), (4)

fg(t) = Mg sin(θ(t)) (gradient resistance), (5)

here M [kg] is the vehicle weight and Rw[m] is the tire
radius, ρ[kg/m3] is the air density, Cd is the air resis-
tance coefficient, Af [m2] is the vehicle frontal projected
area, µ is the rolling resistance coefficient, g[m/s2] is
the gravitational acceleration, θ[rad] is the road gradi-
ent, v[m/s] is the vehicle speed, τd[Nm] is the driver-
demanded torque, t[s] is time. The driver-demanded
torque, which is a measurable disturbance to the car, be-
comes Eq. (6) based on Eq. (1).

τd(t) = Rw(Mv̇(t) +
1

2
ρAfCdv

2(t)

+Mg cos(θ(t)) +Mg sin(θ(t))) (6)

2.2.2. Powertrain Dynamics
We formulate the equation of state of EM1, EM2, and

the engine to configure the powertrain of the HEV. EM1,
EM2, and the engine are connected as shown in Fig. 2
by planetary gears. The relationships among the speed of
the powertrain components are formulated as [8][9]

Rrωem2(t) +Rsωem1(t) = (Rr +Rs)ωeng(t) (7)

where ωem1[rad/s], ωem2[rad/s], and ωeng[rad/s] are
EM1, EM2, and the engine rotational speed, respectively.
Rs[m], Rr[m] are sun gear and ring gear radius, respec-
tively. Then, the motion equation of rotation for EM1,
EM2, and the engine are shown as

Iem1ω̇em1(t) = τem1(t) + fp(t)Rs, (8)

Iem2ω̇em2(t) = τem2(t)−
τd(t)

Gf
+ fp(t)Rr, (9)

Iengω̇eng(t) = τeng(t)− fp(t)(Rs +Rr), (10)

where Iem1[kg ·m2], Iem2[kg ·m2], and Ieng[kg ·m2]
are inertia moments of EM1, EM2, and the engine, Gf is
the differential gear ratio, fp[N] is the interaction force
caused by contact with the planetary gear, τem1[Nm],
τem2[Nm], and τeng[Nm] are EM1, EM2, and engine
torque, respectively. fp(t)[N] is expressed in Eq. (11)
as follows from Eqs. (7) and (8).

fp(t) =
Iem1

R2
s

[(Rr+Rs)ω̇eng(t)−Rrω̇em2(t)]−
τem1(t)

Rs

(11)

The motion equations for EN2 and engine are formulated
in Eq. (12) as follows from Eqs. (9), (10), and (11). Ieng +

(
Rr+Rs

Rs

)2
Iem1 −Rr(Rr+Rs)

R2
s

Iem1

−Rr(Rr+Rs)

R2
s

Iem1 Iem2 +
(

Rr
Rs

)2
Iem1

[
ω̇eng(t)
ω̇em2(t)

]

=

[
1 Rr+Rs

Rs
0

0 −Rr
Rs

1

] τeng(t)
τem1(t)
τem2(t)

+

[
0

− 1
Gf

]
τd(t) (12)

2.2.3. Battery Dynamics
The battery needs to be controlled within its con-

straints to prevent over-charging or over-discharging. The
state of charge is soc[％].

socmin ≤ soc(t) ≤ socmax (13)

The state equation for the battery can be given as [8][9]

˙soc(t) = −
Voc −

√
V 2
oc − 4pbatt(t)Rbatt

2CbattRbatt
(14)

where Cbatt[Ah] is the battery capacity, pbatt[W] is the
battery power , Voc[V] is the open circuit voltage, and
Rbatt[Ω ] is the battery resistance. The battery power in
Eq. (15) is a function of the rotational speed and torque.
Here the efficient of battery charge and discharge are not
considered.

pbatt(t) = τem1(t)ωem1(t) + τem2(t)ωem2(t) (15)

Eqs. (14) and (15) represent the relationship between
˙soc and pbatt in Fig. 3. Therefore, the equation for the

battery state can be formulated as Eq. (17), which can be
considered from the approximate straight line in Fig. 3.

˙soc(t) = Sopbatt(t) (16)

= So(ωem1(t)τem1(t) + ωem2(t)τem2(t)) (17)

where So is the battery coefficient. This equation for the
battery state has time-varying states, which are ωem1(t)
and ωem2(t).

2.2.4. Fuel Consumption Model
We next consider the fuel consumption model. The

instantaneous fuel consumption ṁf [g/s] is expressed in
Fig. 4 from the relationship between torque and speed.
Then, we consider the approximate straight line passing
through the origin in Fig. 4. This line can express as

ṁf (t) = E0τeng(t) (18)

where E0 is the fuel consumption coefficient, which is
average of slop on the each engine rotational speed.

Fig. 3 Soc and battery power
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Fig. 4 Fuel consumption

2.2.5. State Space Representation
We show a state-space representation of the HEV by

using the equations derived in the previous section. The
B matrix is time-varying because the battery has a time-
varying state.

ẋ(t) = Ax(t) +B(t)u(t) + B̃d(t) (19)

y(t) = Cx(t) +Du(t) (20)

subject to umin ≤ u(t) ≤ umax (21)

ymin ≤ y(t) ≤ ymax (22)

where

x(t) =

 ωeng(t)
ωem2(t)
mf (t)
soc(t)

 ,y(t) =

 ωeng(t)
v(t)
mf (t)
soc(t)

 , d(t) = τd(t),

u(t) =

 τeng(t)
τem1(t)
τem2(t)

 ,A = α

 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

B(t) = α


1 Rr+Rs

Rs
0

0 −Rr
Rs

1

E0 0 0
0 So · ωem1(t) So · ωem2(t)

 ,

B̃ =


0

− 1
Gf

0
0

 ,C =


1 0 0 0

0
Gf
Rw

0 0

0 0 1 0
0 0 0 1

 ,D =

 0 0 0
0 0 0
0 0 0
0 0 0

 ,

α =


Ieng +

(
Rr+Rs

Rs

)2
Iem1 −Rr(Rr+Rs)

R2
s

Iem1 0 0

−Rr(Rr+Rs)

R2
s

Iem1 Iem2 +
(

Rr
Rs

)2
Iem1 0 0

0 0 1 0
0 0 0 1


−1

.

2.3. Control Purpose
The cost function can be formulated as the quadratic

equation that minimizes the deviation of the target value
and state.

min
u(τ)

J =

∫ t+∆t

t

((y(τ)− r(τ))TQ(y(τ)− r(τ))

+uT (τ)Ru(τ))dτ (23)

subject to

ẋ(t) = Ax(t) +Bu(t) + B̃d(t) (24)

y(t) = Cx(t) +Du(t) (25)

umin ≤ u(t) ≤ umax (26)

ymin ≤ y(t) ≤ ymax (27)

t ≥ 0 , ∆t > 0 (28)

x(t) =


ωeng(t)
ωem2(t)
mf (t)
soc(t)

 , y(t) =


ωeng(t)
v(t)
mf (t)
soc(t)

 ,

r(t) =


ωengr (t)
ωem2r (t)
mfr(t)
socr(t)

 , u(t) =

 τeng(t)
τem1(t)
τem2(t)

 ,

d(t) = τd(t),R =

 Rτeng 0 0
0 Rτem1 0
0 0 Rτem2

 ,

Q =


Qeng 0 0 0
0 Qv 0 0
0 0 Qmf

0
0 0 0 Qsoc

 .

where J is the cost function, u is the control input, ∆t
is the elapsed time, mfr[g] is the target fuel consump-
tion, ωengr [rad/s] is the target engine speed, ωrem2

[rad/s]
is the target EM2 speed, socr[％] is the target state of
charge, Qeng, Qv, Qmf

, Qsoc are weight of state, and
Rτeng , Rτem1 , Rτem2 are weight of inputs.

3. MODEL PREDICTIVE CONTROL

We formulate a general model predictive control [10].
Model predictive control finds the predictive control input
that minimizes the deviation of the predicted output and
the reference trajectory that exponentially approaches the
target value from the current state in the interval. We
input only the current value from the optimal calculated
control input. In other words, we determine the current
input by prediction and optimization in real time. Then,
we rewrite this cost function as a quadratic programming
problem and calculate the optimization problem.

3.1. Cost Function
Model predictive control represents the cost function

to be solved in discrete time. The cost function is formu-
lated as

min
u

J =

Hp∑
i=0

||ŷ(k + i)− r̂(k + i)||2Q

+

Hu∑
i=0

||∆û(k + i)||2R (29)

subject to
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x̂(k + 1 + i) = Ax̂(k + i) +Bû(k + i)

+B̃d̂(k + i) (30)

ŷ(k + i) = Cx̂(k + i) +Dû(k + i) (31)

ymin ≤ y(k + i) ≤ ymax (32)

umin ≤ u(k + i) ≤ umax (33)

∆û(k + i) = 0 for i = Hu + 1, ..., Hp (34)

where Hu is the control horizon, Hp is the predictive
horizon, r̂ is the reference trajectory, ŷ is the predic-
tive output, k is the current time, i is the step, Q,R are
weights, û is the predictive control input, and ∆û is ex-
pressed by ∆û(k + i) = û(k + i)− û(k + i− 1).

3.2. Predictive Output
The predictive state and predictive input is given as

x̂(k + 1) = Ax(k) +Bû(k) + B̃d(k) (35)

...

x̂(k +Hp) = AHpx(k) +AHp−1Bû(k) + · · ·
+Bû(k +Hp − 1) +AHp−1B̃d(k)

+ · · ·+ B̃d(k +Hp − 1) (36)

û(k) = ∆û(k) + u(k − 1) (37)

...

û(k +Hu − 1) = ∆û(k +Hu) + · · ·+ u(k − 1) (38)

The predicted output is determined by substitut-
ing the estimated input and the predicted state from
Eq. (39). The predictive output from ∆U(k) =
[∆û(k) · · ·∆û(k +Hu − 1)]T is formulated as

Y (k) = Ψx(k)+Υu(k−1)+Θ∆U(k)+ΞDm(k)

(39)

subject to

Y (k) =

 ŷ(k + 1)
...

ŷ(k +Hp)

 ,Dm(k) =


d̂(k)

d̂(k + 1)
...

d̂(Hp − 1)

d̂(Hp)

 ,

Ψ = C



A
A2

...
AHu

AHu+1

AHp


,Υ = C



B
AB

...∑Hu−1
i=0 AiB∑Hu

i=0 A
iB

...∑Hp−1
i=0 AiB


,

Θ = C



B 0 · · · 0
AB +B B · · · 0

... · · ·
. . . 0∑Hu

i=0 A
iB · · · · · · B

B 0 · · · 0∑Hp−1
i=0 AiB · · · · · ·

∑Hp−Hu

i=0 AiB


,

Ξ = C


B̃ 0 · · · 0

AB̃ B̃ · · · 0
...

...
. . .

...
AHp−1B̃ AHp−2B̃ · · · B̃

 .

3.3. Quadratic Programming Problem
First G and Φ are given by Eqs. (40) and (41) as

G = 2ΘTQε(k) (40)

Φ = ΘTQΘ+R (41)

where ε(k) is the error in the predicted output and the ref-
erence trajectory. The quadratic programming problem is
formulated as in Eqs. (42) and (43) with G and Φ.

min
∆U(k)

[
1

2
∆UT (k)Φ∆U(k)−GT∆U(k)

]
(42)

subject to Ω∆U(k) ≤ ω (43)

The optimal ∆U∗(k) is obtained by calculating Eqs. (42)
and (43). The prediction control at the current time be-
comes ∆û∗(k). Then, the optimal solution at the current
time is determined by Eq. (44) in accordance with the
previous inputs.

u(k) = u(k − 1) + ∆û∗(k) (44)

The current optimal control value is inputted to the con-
trol target.

4. GAIN-SCHEDULED MODEL
PREDICTIVE CONTROL

The general model predictive control is formulated in
the previous section, but it is not possible to handle the
time-varying state of the battery. Therefore, we propose
a novel controller using gain-scheduled model predictive
control [7]. We represent the time-varying state by sched-
uled parameters and solve the optimization problem.

At first, we decompose B into 4 matrices, as in Eqs.
(45)～(48), including the maximum and minimum val-
ues of EM1 and EM2 rotation speed. The B matrix is
expressed as Ba

b (a=low or high, b=em1 or em2).

Blow
em1 = α


1 Rr+Rs

Rs
0

0 −Rr

Rs
1

E0 0 0
0 2 · So · ωlow

em1 0

 , (45)

Bhigh
em1 = α


1 Rr+Rs

Rs
0

0 −Rr

Rs
1

E0 0 0

0 2 · So · ωhigh
em1 0

 , (46)

Blow
em2 = α


1 Rr+Rs

Rs
0

0 −Rr

Rs
1

E0 0 0
0 0 2 · So · ωlow

em2

 , (47)
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Bhigh
em2 = α


1 Rr+Rs

Rs
0

0 −Rr

Rs
1

E0 0 0

0 0 2 · So · ωhigh
em2

 . (48)

The four state space representations are utilized for the
model predictive control. Then, the optimization problem
is calculated by adding up the each quadratic program-
ming problem that multiplied the scheduled parameters.
The optimal solution is calculated by Eq. (44).

min
∆U(k)

1

2

[
λlow
em1

[
1

2
∆UT (k)Φlow

em1∆U(k)−Glow
em1

T∆U(k)

]
+λhigh

em1

[
1

2
∆UT (k)Φhigh

em1 ∆U(k)−Ghigh
em1

T∆U(k)

]
+λlow

em2

[
1

2
∆UT (k)Φlow

em2∆U(k)−Glow
em2

T∆U(k)

]
+λhigh

em2

[
1

2
∆UT (k)Φhigh

em2 ∆U(k)−Ghigh
em2

T∆U(k)

]]
(49)

subject to Ω∆U(k) ≤ ω (50)

4.1. Linear Interpolation of the Scheduled Parame-
ters

The scheduled parameters λlow
em1, λ

high
em1 , λ

low
em2, λ

high
em2

are calculated by the actually measured ωem1(t),
ωem2(t). The scheduled parameters are defined near of
the maximum rotational speed and the minimum rota-
tional speed as

ωlow
em1 − δ ≤ ωem1(t) ≤ ωlow

em1 + δ, λlow
em1 = 1, λhigh

em1 = 0 (51)

ωhigh
em1 − δ ≤ ωem1(t) ≤ ωhigh

em1 + δ, λlow
em1 = 0, λhigh

em1 = 1 (52)

ωlow
em2 − δ ≤ ωem2(t) ≤ ωlow

em2 + δ, λlow
em2 = 1, λhigh

em2 = 0 (53)

ωhigh
em2 − δ ≤ ωem2(t) ≤ ωhigh

em2 + δ, λlow
em2 = 0, λhigh

em2 = 1 (54)

where δ is an acceptable error. The scheduled param-
eters in between the maximum rotational speed and the
minimum rotational speed are considered by using a lin-
ear interpolation as shown in Fig. 5.

λhigh
em1 (t) =

ωem1(t)− ωlow
em1 − δ

ωhigh
em1 − ωlow

em1 − 2δ
, (55)

λlow
em1(t) = 1− λhigh

em1 (t), (56)

λhigh
em2 (t) =

ωem2(t)− ωlow
em2 − δ

ωhigh
em2 − ωlow

em2 − 2δ
, (57)

λlow
em2(t) = 1− λhigh

em2 (t). (58)

Fig. 5 Linear interpolation

5. SIMULATION

5.1. Simulation Condition
The proposed approach is validated by numerical sim-

ulations. A software application called GT-suite in Mat-
lab Simulink is used to simulate. The target vehicle speed
as shown in Fig. 6. The driving environment does not
consider traffic congestion, weather, or the grade of the
roadway. Case 1 is the result by the proposed method,
and Case 2 is the result by Rule Base.

R = diag(1.0× 10−8, 1.0× 10−8, 1.0× 10−8) (59)

Q = diag(1, 1, 1, 1) (60)
5.2. Simulation Result

The simulation results of Case 1 and Case 2 are in-
dicated in Figs. 8～15. The actual vehicle speed is in-
tended to follow the target vehicle speed in both cases.
The soc is controlled within the constraints. By the pro-
posed method, the engine is operated at the optimal point.

0 100 200 300 400 500

0

50

Time[s]

V
e
h
i
c
l
e
S
p
e
e
d
[
k
m
/
h
]

Fig. 6 Target vehicle speed

Fig. 7 Simulation block
Table 1 Simulation parameters

Symbol Parameter Value
Iem1 inertia moment of EM1[kg ·m2] 0.0265
Iem2 inertia moment of EM2 [kg ·m2] 0.035
Ieng inertia moment of enjine [kg ·m2] 0.16
Rs sun gear radius[m] 0.30
Rr ring gear radius[m] 0.78
Rw tire radius[m] 0.2982
Gf differential gear ratio 4.113
Af vehicle frontal area[m2] 3.8
M vehicle weight[kg] 1460
µr rolling resistance coefficient 0.015
Cd air resistance coefficient 0.33
g Gravitational acceleration[m/s2] 9.8

Rbatt battery resistance[Ω] 36
Cbatt battery capacity[Ah] 6.5
Voc open circuit voltage[V] 221.62
soc0 the initial value of the soc[％] 60
E0 fuel consumption coefficient 0.077
Ts sampling time[s] 0.02
Hp predictive horizon[step] 5
Hu control horizon[step] 3
So battery coefficient -0.0007
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The fuel economy and soc of Case 1 and Case 2 are
indicated in Table 2. Case 1 improved 5.11% over Case
2. The soc is almost the same in both cases.

6. CONCLUSIONS

In this paper, we have proposed the fuel consumption
optimization for a power-split HEV via gain-scheduled
model predictive control. The proposed controller can
improve fuel economy over the Rule Base and express
the time-varying battery state. Also, the vehicle speed
and the soc is considered by the controller. But in the
case, we don’t consider about the engine characteristic.
These factors and the start time of the engine should be
considered in the future.
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Table 2 Fuel economy and soc

Case 1 Case 2
Proposed Rule Base

Fuel economy 23.67[km/L] 22.52[km/L]
soc 59.39[％] 59.21[％]
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